

Introduction to the APS

George Srajer

Nanomagnetism Workshop, Aug. 29 - Sep. 1, 2004 Fontana, Wisconsin

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

The Advanced Photon Source

Experimental Hall Plan

BUILDING

U.S. Department

Linear accelerator raises electron energy to 325 MeV

Electrons are injected into 368 m long booster synchrotron

Booster raises electron energy to 7 GeV

7 GeV electrons injected into 1104 m circumference storage ring

Electrons orbit in the storage ring emitting synchrotron radiation to insertion device beamlines

... and bending magnet beamlines

APS is a Third-Generation Synchrotron Source

Pioneering Science and Technology

Tunability of Spectral Brilliance

APS is a Pulsed Source

Asymmetric (Hybrid) 1 or 3 + 8 × 7 Special Operating Mode

Timing experiments!

Constant Current Operation at the APS

Conventional fill

Constant current or "top-up"

APS Parameters

Storage ring energy	7.0 GeV
Storage ring current	100 mA
Horizontal emittance, ε_x	3.0 nm-rad
Vertical emittance, ε_y	0.03 nm-rad

Beam energy spread, dE/E	0.096 (%)
Coupling constant	1%
Horizontal beta function, β_x	14.4 m
Vertical beta function, β_y	4.0 m
Dispersion function, h _x	0.124 m
Orbital period	~ 3.6 ms

\Rightarrow *High brilliance*

Bottom line: Lots of photons in a small area!!

Synchrotron Sources

What are they good for:

1. Energy tunability \rightarrow Element specificity

Enables studies of heterogeneous systems

2. High brilliance \rightarrow High flux density

Enables studies of small and dilute samples

3. High momentum resolution \rightarrow High spatial resolution

Enables studies of surfaces and interfaces

4. Timing structure

Enables studies of time-dependent processes

Synchrotrons for Magnetism

Separate orbital and spin contributions

"Obstacles" for Using Synchrotron Sources

- Lack of familiarity with techniques
- Often complicated interaction mechanism
- Synchrotron sources are not in your backyard

Application of synchrotron-based techniques for magnetism studies became a viable tool only in the last ~ 10 years

Interaction of X-rays with Matter

Scattering of x-rays from electrons in a periodic medium

(Blume and Gibbs, PRB **37**, 1779 (1988)):

$$\frac{d\sigma}{d\Omega} = r_o^2 \left| \sum_{n} e^{i\vec{Q}\cdot\vec{r}_n} f_n(\vec{k}, \vec{k}', \hbar\omega) \right|^2$$

Scattering amplitude:

$$f(\vec{k}, \vec{k}', \omega) = f^{ch \arg e}(\vec{Q}) + f'(\vec{k}, \vec{k}', \omega) + if''(\vec{k}, \vec{k}', \omega) + f^{spin}(\vec{k}, \vec{k}', \omega)$$

 $f^{\text{charge}} \rightarrow \text{Thomson scattering}$

f' and $f'' \rightarrow$ energy-dependent contributions

 $f^{\text{spin}} \rightarrow \text{scattering from spins of electrons}$

At 10 keV:

$$\frac{f^{spin}}{f^{ch \arg e}} = 0.02$$

Scattering Cross Sections

Nonresonant:

$$f = f^{ch \operatorname{arg} e} + f^{magnetic} = \rho(Q) \ \hat{\varepsilon}' \cdot \hat{\varepsilon} + i r_o \left(\frac{\hbar \omega}{m_e c^2} \right) \left[\frac{1}{2} \vec{L}(Q) \cdot \vec{A} + \vec{S}(Q) \cdot \vec{B} \right]$$

Resonant (dipole only):

$$f^{res} = F^{0}(\hat{\varepsilon}_{f} \cdot \hat{\varepsilon}_{i}) - iF^{1}(\hat{\varepsilon}_{f} \times \hat{\varepsilon}_{i}) \bullet \hat{m}_{n} + F^{2}(\hat{\varepsilon}_{f} \cdot \hat{m}_{n})(\hat{\varepsilon}_{i} \cdot \hat{m}_{n})$$

Magnetic Sensitivity with Circularly Polarized Beam

$$I_{s} = I^{L} - I^{R}$$

$$\mu_c = \mu^L - \mu^R$$

Specialized Circularly Polarized Undulator

Fully electromagnetic insertion device in XOR-4

Produces left and right circular ($P_c > 96\%$) and horizontal and vertical linear polarization

Storage ring vacuum chamber

Dedicated Beamlines for Magnetism Studies at APS

User Community

Increase in APS users, by fiscal year

APS Users Publications

Summary

- Basic operational features of the APS introduced
- X-ray scattering cross section magnetism emphasized outlined
- Dedicated beamlines for magnetism studies introduced
- Healthy growth of the users community shown

D. Keavney, J. Freeland, D. Haskel, K. Attenkoffer and J. Lang \Rightarrow specific examples

